Mechanism of Partial Agonist Action at the NR1 Subunit of NMDA Receptors
نویسندگان
چکیده
منابع مشابه
Mechanism of Partial Agonist Action at the NR1 Subunit of NMDA Receptors
Partial agonists produce submaximal activation of ligand-gated ion channels. To address the question of partial agonist action at the NR1 subunit of the NMDA receptor, we performed crystallographic and electrophysiological studies with 1-aminocyclopropane-1-carboxylic acid (ACPC), 1-aminocyclobutane-1-carboxylic acid (ACBC), and 1-aminocyclopentane-1-carboxylic acid (cycloleucine), three compou...
متن کاملMolecular mechanism of pregnenolone sulfate action at NR1/NR2B receptors.
NMDA receptors are highly expressed in the CNS and are involved in excitatory synaptic transmission and synaptic plasticity as well as excitotoxicity. They have several binding sites for allosteric modulators, including neurosteroids, endogenous compounds synthesized by the nervous tissue and expected to act locally. Whole-cell patch-clamp recording from human embryonic kidney 293 cells express...
متن کاملActivation of recombinant NR1/NR2C NMDA receptors.
The N-methyl-d-aspartate (NMDA) subtype of ionotropic glutamate receptors comprises both NR1 and NR2 subunits, and plays numerous roles in both physiological and pathophysiological processes in the central nervous system (CNS). NR2C-containing NMDA receptors are most abundant in cerebellum, thalamus and olfactory bulb, and are also expressed in oligodendrocytes and hippocampal interneurons. We ...
متن کاملInactivation of NMDA Receptors by Direct Interaction of Calmodulin with the NR1 Subunit
NMDA (N-methyl-D-aspartate) receptors are excitatory neurotransmitter receptors in the brain critical for synaptic plasticity and neuronal development. These receptors are Ca2+-permeable glutamate-gated ion channels whose physiological properties are regulated by intracellular Ca2+. We report here the purification of a 20 kDa protein identified as calmodulin that interacts with the NR1 subunit ...
متن کاملControl of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit.
Zinc inhibits NMDA receptor function through both voltage-dependent and voltage-independent mechanisms. In this report we have investigated the role that the NR1 subunit plays in voltage-independent Zn2+ inhibition. Our data show that inclusion of exon 5 into the NR1 subunit increases the IC50 for voltage-independent Zn2+ inhibition from 3-fold to 10-fold when full length exon 22 is also splice...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neuron
سال: 2005
ISSN: 0896-6273
DOI: 10.1016/j.neuron.2005.05.022